180 research outputs found

    Cardiorespiratory fitness as a mediator between body fat rate and executive function in college students

    Get PDF
    PurposeTo examine whether body fat rate (BF%) is associated with cardiorespiratory fitness (CRF) and whether cardiorespiratory fitness (CRF) mediates the association between BF% and Executive function (EF) in young adults.MethodsIn this cross-sectional study, 226 college students were recruited from an university. Flanker, 2-back, and odder and shifting tasks were used to assess EF. The incremental cardiopulmonary exercise tests were performed, and maximal oxygen consumption was recorded during test. The body composition measuring instrument was used to evaluate the participants’ BF%.ResultsThe BF% of college students was negatively correlated with each EF, BF% was negatively correlated with CRF, and CRF was negatively correlated with EF (P< 0.001). Structural equation modeling (SEM) and simultaneous analysis of several groups were used to construct mediator model. The CRF of college students plays a partial mediating role between BF% and EF, and the mediating effect accounts for 48.8% of the total effect value. Sex has no moderate effect on the relationship between BF%, CRF, and EF.ConclusionsCollege students with high BF% can improve their CRF by strengthening physical exercise, thereby indirectly improving their EF. Therefore, college students who have a higher body fat percentage should be compensated for engaging in physical exercise in order to enhance their CRF and mitigate the detrimental effects of obesity and overweight on EF

    Morphological characterization of shocked porous material

    Full text link
    Morphological measures are introduced to probe the complex procedure of shock wave reaction on porous material. They characterize the geometry and topology of the pixelized map of a state variable like the temperature. Relevance of them to thermodynamical properties of material is revealed and various experimental conditions are simulated. Numerical results indicate that, the shock wave reaction results in a complicated sequence of compressions and rarefactions in porous material. The increasing rate of the total fractional white area AA roughly gives the velocity DD of a compressive-wave-series. When a velocity DD is mentioned, the corresponding threshold contour-level of the state variable, like the temperature, should also be stated. When the threshold contour-level increases, DD becomes smaller. The area AA increases parabolically with time tt during the initial period. The A(t)A(t) curve goes back to be linear in the following three cases: (i) when the porosity δ\delta approaches 1, (ii) when the initial shock becomes stronger, (iii) when the contour-level approaches the minimum value of the state variable. The area with high-temperature may continue to increase even after the early compressive-waves have arrived at the downstream free surface and some rarefactive-waves have come back into the target body. In the case of energetic material ... (see the full text)Comment: 3 figures in JPG forma

    Synchronization Control for Stochastic Neural Networks with Mixed Time-Varying Delays

    Get PDF
    Synchronization control of stochastic neural networks with time-varying discrete and continuous delays has been investigated. A novel control scheme is proposed using the Lyapunov functional method and linear matrix inequality (LMI) approach. Sufficient conditions have been derived to ensure the global asymptotical mean-square stability for the error system, and thus the drive system synchronizes with the response system. Also, the control gain matrix can be obtained. With these effective methods, synchronization can be achieved. Simulation results are presented to show the effectiveness of the theoretical results

    Combined use of in-reservoir geological records for oil-reservoir destruction identification: A case study in the Jingbian area (Ordos Basin, China)

    Get PDF
    Rapid identification of reservoir destruction is critical to avoid exploration failure. More indicators of reservoir destruction are urgently needed to be developed besides the evaluation methods of trap effectiveness based on structural analysis. Here, we provide a case study in the Ordos Basin to show that the combined use of in-reservoir geological records is a robust tool to rapidly identify oil-reservoir destruction. The sandstones within the Yanchang Formation in the oil-depleted Jingbian area were investigated by petrological and geochemical analysis. The results show that 1) the oils with increased density and viscosity occur in the low permeability sandstones, whereas the high permeability sandstones were occupied by water, 2) abundant solid bitumen occur in the intergranular pores, 3) the n-alkanes with carbon numbers less than 19 are significantly lost from the original oils, and 4) the majority of paleo oil layers have evolved into present water layers. All these in-reservoir physicochemical signatures unravel the same geological event (i.e., oil-reservoir destruction) in the Jingbian area. This oil-reservoir destruction was likely caused by the uplift-induced erosion and the fault activities after oil accumulation during the Late Early Cretaceous

    Genesis of a giant Paleoproterozoic strata-bound magnesite deposit: Constraints from Mg isotopes

    Get PDF
    The final publication is available at Elsevier via https://doi.org/10.1016/j.precamres.2016.06.020 © 2016. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/Giant strata-bound magnesite deposits are absent in modern and most Phanerozoic sedimentary environments but occur predominantly in Precambrian strata. These deposits may have formed directly through precipitation of evolved Mg-rich seawater in an evaporative shallow-marine setting or, alternatively, by epigenetic–hydrothermal replacement of the Mg-rich carbonate precursor. To test these hypotheses, we obtained the first Mg isotope data from the world’s largest strata-bound magnesite deposit belt, hosted by the ca. 2.1 Ga Dashiqiao Formation in Northeast China. The Mg isotope compositions (d26Mg) of most magnesite ores in the Huaziyu deposit are heavier (–0.75 ± 0.26‰) than most Proterozoic sedimentary dolostones. The Mg isotope compositions and major and trace element data indicate that the magnesites are probably not of hydrothermal origin. Instead, a Mg-rich carbonate precursor precipitated from evaporating seawater in a semi-closed system. Diagenetic brines altered the Mg-rich carbonate precursor to magnesite. Subsequently, recrystallization during regional metamorphism produced coarsely crystalline and saddle magnesite. These interpretations are consistent with the geological features and other geochemical data (element concentrations and C and O isotopes) for the magnesite ores. Hence, we interpret the formation of the Huaziyu magnesite deposit to be dominated by evaporative sedimentation and brine diagenesis.Natural Science Foundation of China || (41203004) MLR Public Benefit Research Foundation of China || (201211074) NSERC Discovery Gran
    • …
    corecore